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.) Introduction

Permeation measurements using ho1low cylinder apparatus
have frequently been analyzed by the solution of Fick’s diffusion
equation in planar geometry. The error of the planar approximateion
to hollow cylinder geometry have never been fully investigated.

In this report the solution of the diffusion equation for
hollow cylinder is derived. The results are compared with planar
geometry and the error range has been calculated.

Swary and Conclusion

1. The relative error in diffusivity calculated by a planar
treatment of data from hollow cylinder measurements is O.65%
when the radius ratio is 0.6. The error increases as the ratio
decreases.

2. ~is error (O.65%) is far below normal experimentaluncer-
tainty which is in the range of 3-5%.

3. Planar geometry approximateion are justified for radius ratios
larger than 0.6, which cover most experimental work done in the
permeation study.

Discussion

The solutions of Fick’s law of diffusion have been studied ex-
tensively for various boundary conditions]-3. Permeation tests
are usual1y conducted by “Breakthrough!!and l!Pump-o”tt!methods.
In the “Breakthrough!tmethod, both sides of a sample are evacuated
initially. Applying a fixed pressure of gas on one side, the flow
rate is then measured on the other side of the sample until steady
state is reached. In the “pump-out!!method one side of a sample
is under a fixed pressure and the other side is under vacuum. In
this case the flow rate of gas through the sample is at steady
state to begin with. Pumping out quickly on the high pressure side,
the flw rate is then measured repeatedly on the initially evacuated
side until the flow reaches a minimm yalue measurable.

The relative flow rate to that at steady state for hollow cylinder
geometry can be formulated as

()
. Jo (a%) JO (b%)

Y=-2Ln~I—
Joz (a~)-Jo (b%)=*1 ‘~[- an’“I

where a and b are inner and outer radius of hollow cylinder, respect-
ively, Jo is the bessel function 4 of the first kind, D is diffusivity
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n’s are the eigen values of the equationand a

‘Jo (a%) Yo (ban) - Jo (ban) YO (aw) = o

The Yo is “Bessel function’!of the second kind. For “Breakthrough”
experimentsy is defined by

~= Js -J(t)
Js

and for “Pump-Out” it

J (t)Y=x

is

Js and J (t) are the flow rates at steady state and at time t,
respectively. The details of the derivation of the equations are
in Appendix A.

The planar geometry solution has

.

[1n2?r2Dt
y plann = 2 Z (-l; exp —

~=1 (b-a)2

where (b-a) is the thickness of the sample.

The ratios of exponents in cylindrical and planar equations.

. (.%)2 ()b-a 2
~2f2 T

are calculated for various ~ from 1.2 to 4 at n-1. The results
are listed in Table 1. The ratios are also calculated for various
n from 1 to 5 at a fixed value of & = 1.667. These are listed in
Table 2. a

Fgr large t the first term is sufficient to accurately estimate
y in the summation. For hollow cylinders taking the first term only
and taking the logarithm

Then diffusivity is

D=-l
[1

@y
cyl G at

Similar calculations

* .._ ir2Dt
(b-a)2

for planar geometry give



and

D
(b-a) [–1a~nY

planar= ‘~ at

The diffusivity ratio for the two geometries is

D
lanaL=~y

DCyl
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For bfa = 1.667, aal is 4.69706 and the diffusivity ratio is

D =D
Cyl planar/o.9935

The true diffusivity of a hollow cylinder should be about 0.65%
larger than the value calculated by assuming a planar geometry.

The asymptotic value of y is derived in detail in Appendix B,
and is given by

Y = -2
aSym

Where k = b/a.
k approaches 1

fi bk [1~2T2Dt— Z (-1)* exp -—k-l (b-a)2

lim lnk
k.l~=l

For planar of which a and b go to infinity and

and

li~ Ycyl = Yplann
k+l



APPENDIX A

The solution of Diffusion Equation of Hollow Cylinder for
“Pump-out”and “Breakthrough”cases.

The diffusion equation for the cylindrical coordinate is

lac 1 ac
()

ac 1 azc .azc——. ——
D at T ar r~ +~~+~

For the radial flow, the concentration is not a funCtiOn of @
and Z. At steady state, we have

acs
==0

a

()

acs
‘x ‘x

The solution of this equation is

~~ : CI !?.n(b/r) + C~!n (r/a)
an’(b/a)

by boundary conditions

atr=a C=C1

atr=b C=C2

The flow rate at steady state Js is

()J~=_2T=D&
ar

= _ 2TD (Cz - Cl)
Ln (b/a)

A-1

A-2

A-2

A-4

A-5

The general solution of equation A-1 for the radial flowz is

b
T2 m ‘n’ Jo ‘aan) ~-an2Dt ~. ~r%)

;=Tz
~=1 Joz (aan)-Jo2(ban) : J

rF(r) Uo(ran) dr
0

j {Cz Jo(aan) -
-T

CIJO (ban)}Jo (aan) U. (r%) ~ - an
2 Dt

*=1 J.’ (aan) - Jo (b%)

+ C, Ln (b/r) + C2 Ln (r/a)
kn (b/a)

A-6



Mere Jo is a Bessel of ‘thefirst kind,

Uo (r%) = Jo (~r) Y. (Mb) - Jo(~b) Yo (~r)

Uo (ban) = Uo (ban) = O

A-7

A-8

Where Yo is Bessel functioz of the second kind, F (r) is the
concentrationof t=O, and ~‘s are the solution of equation A-8.
For the “breakthroughcase,” the bounda~ conditions ~re

t=o F(r)=O

t>o C (r=a) = Cl = i) A-9
C (r=b) = C2

By the equation A-6, the concentration is

C2 Ln (r/a) m

c=
J02 (a%)

kn (b/a)
-rc~z

Joz (a%) - Joz(b%) Uo (ran)e ~z Dt
~=1

A-10

~

The flow rate is

I c~ .
Jo2(a%) e~n’ Dt

= ‘n D kn (h/a) + 4*2 C2D .:l Jo’(~)-J02 (~)

m
= Js -4 TDC2 E Jo (aan) Jo (ban) _ ~~z Dt

~=1 J02(aan) - Joz(ban) e

or

Js - J (t)
. Jo (a%) Jo (ha”)

Js = -2 In (b/a) Z
~=1 Jo (a%) - Jo (b%)

For the “pump-out” case, the bondary conditions are:

t+o

Cl=o

C (r=a) = Cl = O

C (r=b) = CZ = O

2 Jo (ban)-—
~~

A-n

A-12

A-13



We have

C2 !?,n(r/a)
rF (r) = In ~b, a) A-14

b b

J ‘2 f
C2Ln a

‘F ‘r) ‘0 ‘ran)‘r = i- rLnr U. dr - —
Rn(b/a)J

rUo dr
a a a

C2 2 {Jo(aan) @b-Jo (ban) !n a} C2Ln ~ 2 {Jo (aQn-Jo (ban)}
. ——
9.n(b/a) T a’ Jo (a%) -m r~2 Jo(~~n)

‘2C2

‘c

and . Joz (aan) ~
c=iTc2 z ~’ ‘t U. (r%)

302(a%) - Joz(ban)
A-16

~=1

The flow rate is

J=21Tr~

. Joz (a%) ~-~z Dt
()

au,
= 21rD ITC2

~~1 Joz (a%) - Joz (b%) r K A-17

But

()

au~
r

7 ‘s

()

2 Jo (ban)
‘2=-F=

a

Then we have
.

J=41rDc2 z
Jo (a%) Jo (b%) ~ %2 Dt

. ~=1 Joz(a%) - Joz(b%)

or
.

J (t) _ Jo (a%) Jo (b%)
—--2 kn(b/a)Z
Js Joz(a%) - Joz(b%)n=l

.-

A-18

A-19

2
, -~ Dt A-20



. .

.

This is the same as equation A-12, by combining equations A-12 and
A-20 we have

m Jo (aun) Jo (b%)
y=-2Ln(b/a)Z ~ ~z Dt

11=1J02(~) - J02 (b%)

where Y = J (t)/Js for ‘Ipump-out”CaSe

and y = [Js - J (t)]/Js for the “breakthrough” case.

The plannar solution is known to be

.

y = -2 x (-l)n
*=1 ‘w [-%”’1

where d = b-a.

.,

.

A-21

A-22
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For large x Jo (x)

APPENDIX B AS~TOTIC

and Jo (x) are

()‘0 ‘x)’” kc”’ ‘- :

()Y“(x)m%’i” ‘i
The equation A-7 by this asymptotic

Jo (X) yO (kx) - Jo (kx) yO (X) = O

SOLUTION

B-1

B-2

[

21.—
TX z

cos (x - ~) sin(kx - ~)-cos (kx - ~)sin(x - ~)

=: ~ sin ((k-l) x) B-3

The solution is

nr
x .—
n k-l B-4

where k = ~ . And an iS by A-8

%~~.—
a

Also we have

B-5

and

‘0“.) ‘0(“n)‘*i ‘Os$.-~)‘Os(k.‘f)
* k (’n-;)=(-1)” # ~ Cos’

()J~2 (Xn) = & ...2 . _ ;
n n

Joz (kxn) = ~
()

r
COS2

‘n T
n

By equations B-6, B-7, B-8 and A-21 we have

k
Y = -2 ink Z(-l)n [1

n’IT2Dt
assym

—exp-—
1-+ d2

B-6

B-7

B-8

B-9
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By comparison with A-22 we have

Y (= K Lnkasymp
— ‘plannk-1 )

For the limiting case where k + 1, a and b go to infinity, the
cylindrical geometry approaches planar. By considering both the
relationship

iim ~n (1+x) _ ~
x% x

and equation B-10

M Yc y~in Lim y
&l = ~ asymp

= ‘plan

B-10

B-n

B-12
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TABLE 1

EXPONENT OF THE FIRST TERM

1.2 15.7014 0.99916
1.5

0.000B4
6.2702 0.99587 0.00413

1.6667 4.69706 0.99350
2.0

0.00650
3.1230 0.9B820

3.0
0.01180

1.5485 0.97181
4.0

0.02819
1.0244 0.95693 0.04307


